Percutaneous Repair for MR:

Follow-up and longer term outcomes

Ted Feldman, M.D., FSCAI FACC FESC Evanston Hospital

16th ANGIOPLASTY SUMMIT TCT Asia Pacific 2011 April 27-29th Seoul, Korea

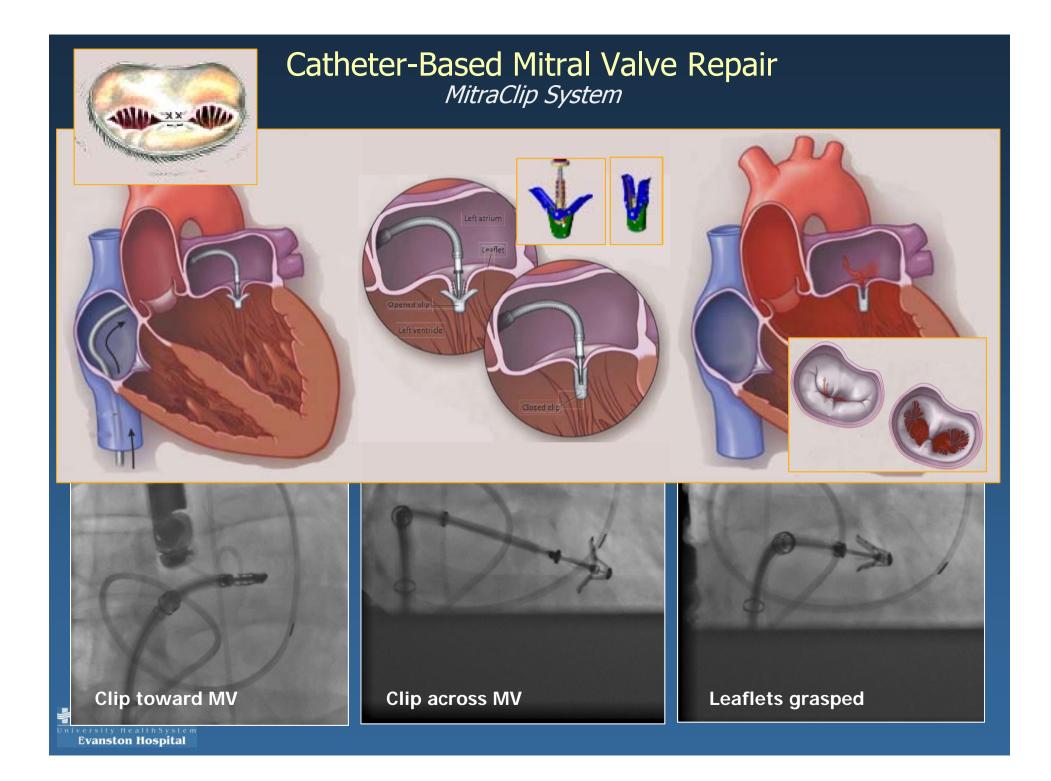
Ted Feldman MD, FACC, FESC, FSCAI

Disclosure Information

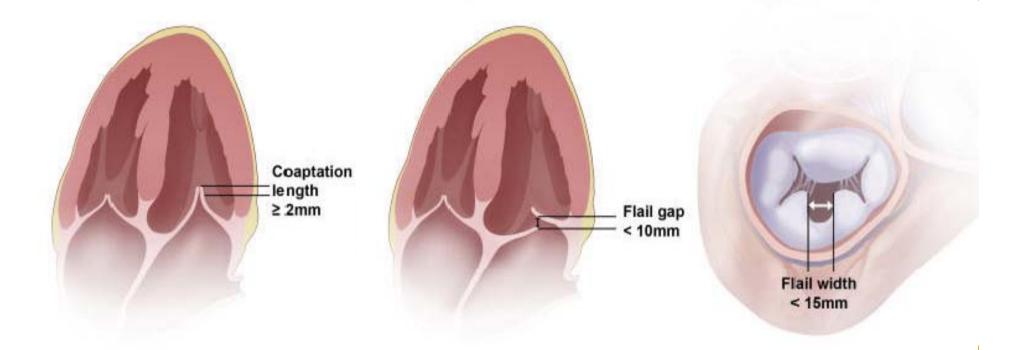
The following relationships exist:

Grant support: Abbott, Atritech, BSC, Edwards, St Jude, WL Gore Consultant: Abbott, BSC, Coherex, Edwards, Intervalve, Diiachi Sankyo-Lilly, WL Gore Speaker: Boston Scientific

Off label use of products and investigational devices will be discussed in this presentation

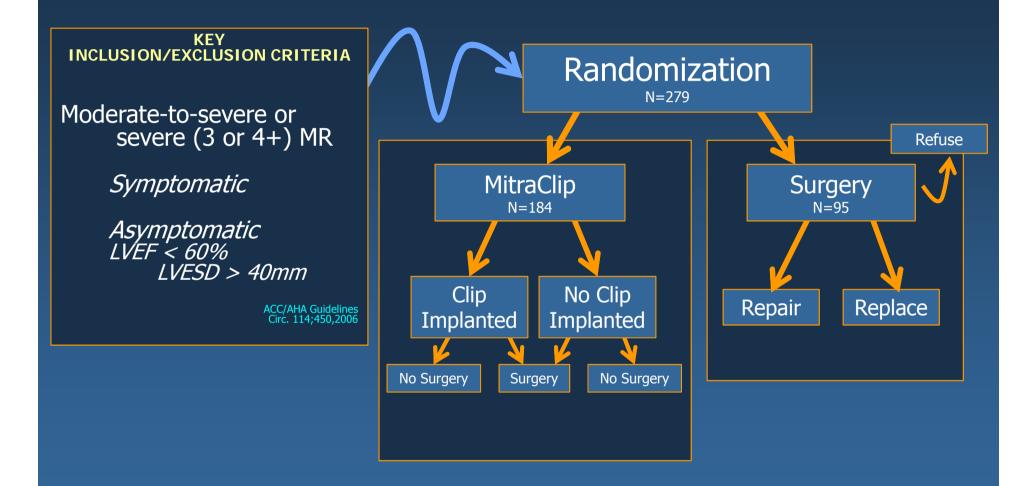


Clinical Experience


Study	Population	n
EVEREST I (Feasibility)*	Non-randomized	55
EVEREST II*	Pre-randomization	60
EVEREST II	High Risk Registry	78
EVEREST II (Pivotal)	Randomized patients	279
	(2:1 MitraClip to Surgery)	184 MitraClip
		95 Surgery
REALISM (Continued Access)	High Risk & Non High Risk	561
European Experience		2,082
	Total	3,200 MitraClip

*Percutaneous Mitral Valve Repair Using the Edge-to-Edge Repair: Six months Results of the EVEREST Phase I Clinical trial, JACC 2005;46:2134-2140. Percutaneous Mitral Repair with the MitraClip System: Safety and Midterm Durability in the Initial EVEREST Cohort, JACC 2009; 54:686-694.

Anatomic Eligibility Leaflet mal-coaptation resulting in MR



Non-rheumatic/endocarditic valve morphology; LVIDs \leq 55mm; MVA \geq 4cm²

Feldman T, Kar S, Rinaldi M, Fail P, Hermiller J, Smalling R, Whitlow PL, Gray W, Low R, Herrmann HC, Lim S, Foster E, Glower D Percutaneous Mitral Repair with the MitraClip System: Safety and Midterm Durability in the Initial EVEREST Cohort NorthShore J Am Coll Cardiol 54:686-694, 2009

Evanston Hospital

EVEREST II Randomized Trial

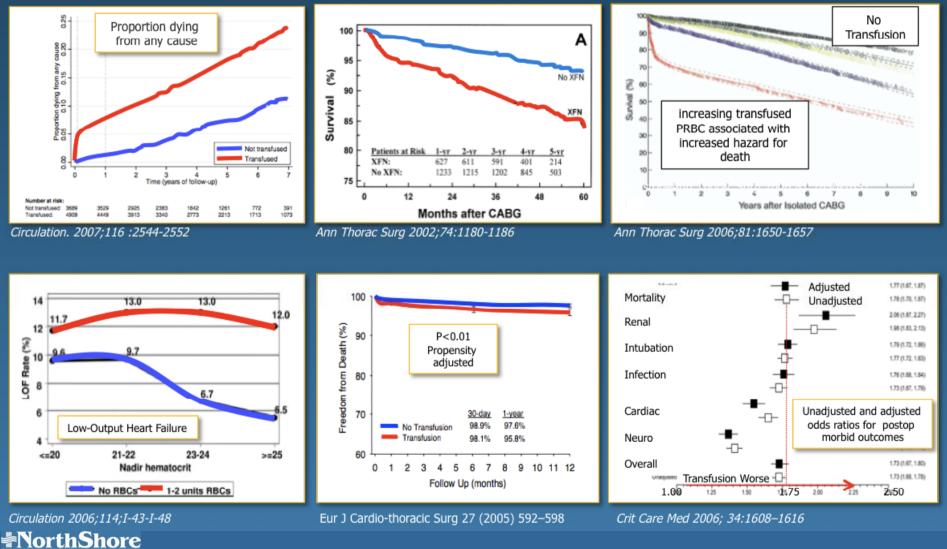
EVEREST II Randomized Clinical Trial Demographic Comparison

	EVEREST II RCT	2008 STS	Database	Isolated 1 st Elective Operation for MR*
	n=279	Repair	Replace	High Volume Hospitals (>140/Yr)
Age yrs (mean)	68	60	61	59
≥65 yrs	58%	37%	45%	n/a
≥75 yrs	32%	n/a	n/a	0%
NYHA Class III or IV	50%	26%	45%	n/a
CHF	86%	41%	58%	n/a
Hypertension	75%	60%	67%	43%
Diabetes Mellitus	9%	13%	23%	6.5%
COPD / Chronic Lung Disease	15%	17%	29%	n/a
EF (mean)	60%	53%	55%	56%

*Gammie JS et al Influence of Hospital Procedural Volume on Care Process and Mortality for Patients Undergoing Flective US Surgery for Mitral Regurgitation. Circ 2007;115:881-887.

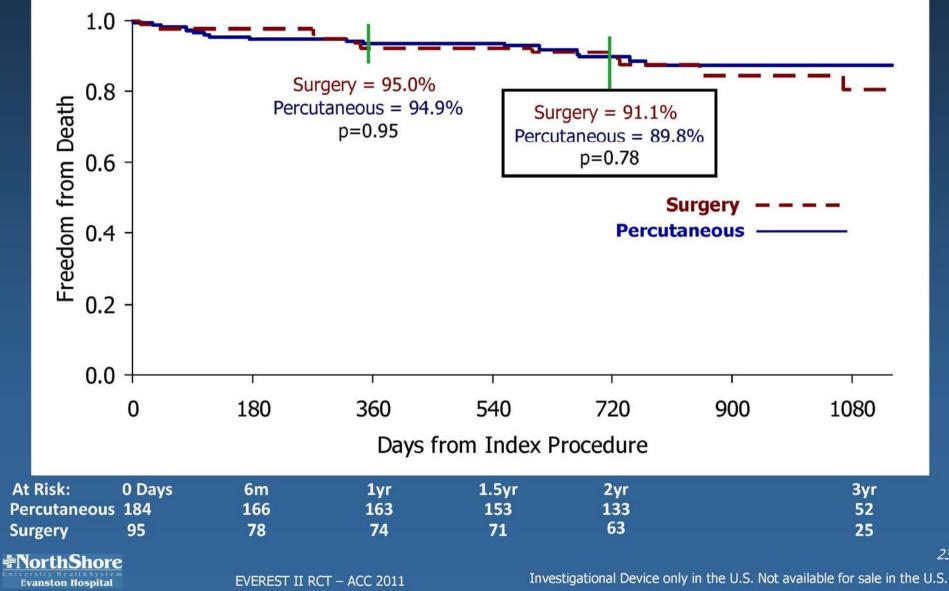
University Health Syste Evanston Hospital

Safety Endpoint: 30 Day MAE Intention to Treat

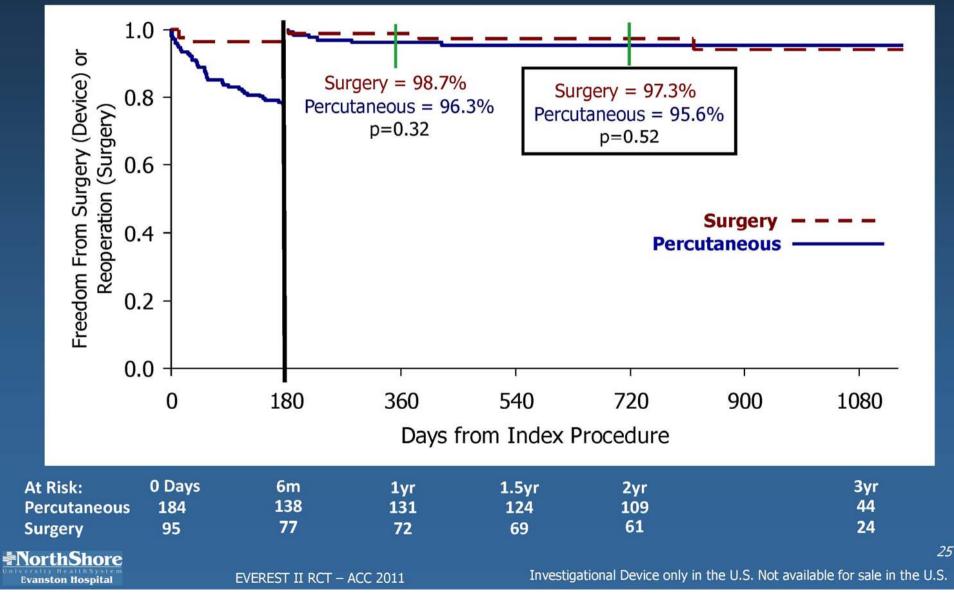

	# (%) Patients experiencing event		
30 Day MAE	Percutaneous (N=180)	Surgery (N=94)	
Death	2 (1.1%)	2 (2.1%)	
Major Stroke	2 (1.1%)	2 (2.1%)	
Re-operation of Mitral Valve	0	1 (1.1%)	
Urgent / Emergent CV Surgery	4 (2.2%)	4 (4.3%)	
Myocardial Infarction	0	0	
Renal Failure	1 (0.6%)	0	
Deep Wound Infection	0	0	
Ventilation > 48 hrs	0	4 (4.3%)	
New Onset Permanent Atrial Fib	2 (1.1%)	0	
Septicemia	0	0	
GI Complication Requiring Surgery	2 (1.1%)	0	
Transfusions \geq 2 units	24 (13.3%)	42 (44.7%)	
TOTAL % of Patients with MAE	15.0%	47.9%	
	Difference (Percutaneous – Surgery) = -32.9% p<0.001; (95% CI: -20.7%, -45.0%)		

NorthShore

EVEREST II RCT - ACC 2011


Investigational Device only in the U.S. Not available for sale in the U.S.

Increased morbidity & mortality with transfusion after cardiac surgery


Evanston Hospital

Kaplan-Meier Freedom from Death Intention to Treat

23

Landmark Analysis of Kaplan-Meier Freedom from MV Surgery (Percutaneous)/Re-operation (Surgery) Intention to Treat

Clinical outcome measures at 2 years include:

- Mitral regurgitation grade
- Left ventricular volumes
- NYHA Functional Class

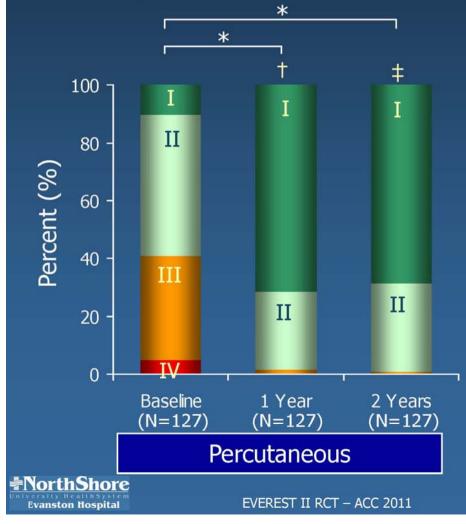
26

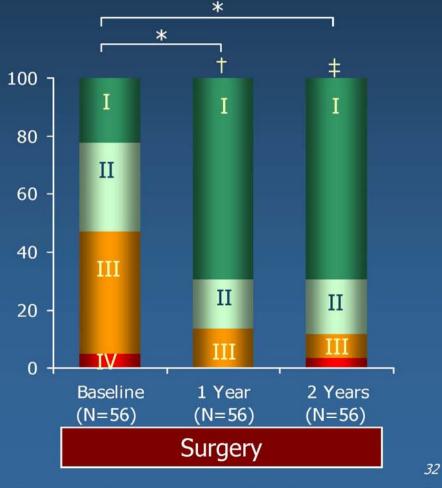
Mitral Regurgitation Grade Baseline, 1 and 2 Years (matched) Intention to Treat

* Within group difference (p<0.05)

+ Between group difference at 1 year (p<0.05)

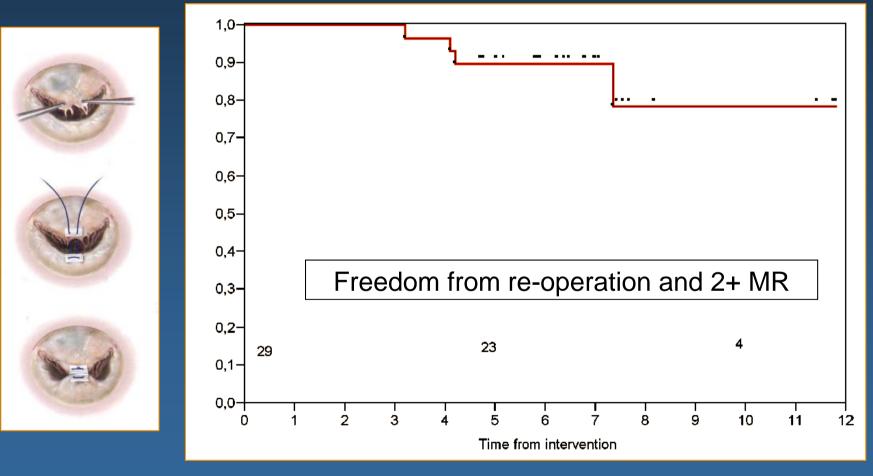
Between group difference at 2 year (p<0.05)</p>


LV Volumes Baseline, 1 and 2 Years (matched) Intention to Treat


- * Within group difference (p<0.05)
- + Between group difference at 1 year (p<0.05)
- # Between group difference at 2 year (p<0.05)</p>

NYHA Functional Class At Baseline, 1 and 2 Years (matched) Intention to Treat

- * Within group difference (p<0.05)
- + Between group difference at 1 year (p<0.05)
- # Between group difference at 2 year (p<0.05)</p>



Investigational Device only in the U.S. Not available for sale in the U.S.

Surgical isolated edge-to-edge mitral repair without annuloplasty

clinical proof of principle for an endovascular approach

Maisano F, Vigano G, Blasio A, Columbo A, Calabrese C, Alfieri O

Eurointervention 2:181-186, 2006

EndovascularValveEdge-to-Edge REpairSTudy

Subgroup	Percutaneous Repair	Surgery	Difference between Percutaneous Repair and Surgery (%	P Value for) Interaction
	no. of events/t	otal no. (%)		
All patients	100/181 (55)	65/89 (73)	_	
Sex				0.97
Male	63/114 (55)	43/59 (73)		
Female	37/67 (55)	22/30 (73)		
Age				0.009
≥70 yr	52/86 (60)	23/38 (61)	•	
<70 yr	48/95 (51)	42/51 (82)		
MR				
Functional	26/48 (54)	12/24 (50)		0.02
Degenerative	74/133 (56)	53/65 (82)	_	
LVEF				0.06
<60%	35/68 (51)	15/28 (54)		
≥60%	64/111 (58)	50/61 (82)	İ	
				1 50
			Surgery Better Percutaneous Repair Better	

Subgroup Analyses for the Primary End Point at 12 Months

Feldman T et al. N Engl J Med 2011;364:1395-1406

Worldwide Experience Comparison

	Commercial	REALISM
Patients Treated	2082	561
Hospitals/Sites	98	38
Etiology: FMR/DMR/Mixed (%)	66%/28%/6%	58%/36%/6%
Average Device Time ¹ (hr)	1:45	1:46
Clip Implant Rate ¹ (%)	95%	94%
1 Clip/2 Clip/3 Clip/4 Clip ¹ (%)	68%/30%/2%/<1%	60%/40%
Site Reported MR Reduction ² (%)	98%	99%
Clip Embolization ^{2,3} (%)	0.1%	0%

¹Includes first-time procedures only – not 2nd Clip interventions ²Applies only to successful implants – does not include non-implants ³One possible embolization is under investigation, further details are pending Data as of 4/10/2011

NorthShore
University Health System
Evanston Hospital

Acute outcomes of MitraClip therapy for mitral regurgitation in high-surgical-risk patients: emphasis on adverse valve morphology and severe left ventricular dysfunction

Olaf Franzen¹*, Stephan Baldus¹, Volker Rudolph¹, Sven Meyer¹, Malgorzata Knap¹, Dietmar Koschyk¹, Hendrik Treede², Achim Barmeyer¹, Joachim Schofer³, Angelika Costard-Jäckle¹, Michael Schlüter¹, Hermann Reichenspurner², and Thomas Meinertz¹

¹Department of General and Interventional Cardiology, University Heart Centre, Hamburg, Germany; ² Germany; and ³Medical Care Centre Prof. Mathey, Prof. Schofer, Hamburg, Germany

Received 26 October 2009; revised 21 December 2009; accepted 19 January 2010

NorthShore
University HealthSystem
Evanston Hospital

Table 2 Baseline patient characteristics

	All patients (n = 51)	EVEREST + (n = 16)	EVEREST-	(n = 35) P (+ vs)
Age, years \pm SD	73 ± 10	72 ± 9	74 ± 10	0.46
Male gender, n (%)	34 (67)	11 (69)	23 (66)	1.00
Logistic EuroSCORE \pm SD	28 ± 22	18 ± 17	33 ± 23	0.027
STS score \pm SD	16 ± 11	13 ± 9	17 ± 12	0.46
Ischaemic cardiomyopathy, n (%)	25 (49)	9 (56)	16 (46)	0.56
Dilated cardiomyopathy, n (%)	17 (33)	5 (31)	12 (34)	1.00
MR type, n (%)				
Functional	35 (69)	11 (69)	24 (69)	1.00
Organic	16 (31)	5 (31)	11 (31)	
MR severity, n (%)				
3+ (moderate-to-severe)	21 (41)	9 (56)	12 (34)	0.22
4+ (severe)	30 (59)	7 (44)	23 (66)	
NYHA functional class, n (%)				
н	1 (2)	1 (6)	0 (0)	0.29
ш	24 (47)	8 (50)	16 (46)	
IV	26 (51)	7 (44)	19 (54)	
LVEF, % ± SD	36 ± 17	40 ± 13	34 ± 19	0.14
LVEDD, mm \pm SD	65 ± 9	63 ± 5	67 ± 10	0.18
LVESD, mm \pm SD	54 ± 10	52 ± 5	55 ± 12	0.26
LVEDV, $mm^3 \pm SD$	188 ± 56	171 ± 27	196 ± 56	0.14
LVESV, $mm^3 \pm SD$	124 ± 57	101 ± 22	136 <u>+</u> 66	0.046
MVOA, $cm^2 \pm SD$	4.6 ± 1.0	4.8 ± 0.9	4.4 ± 1.0	0.16
Mean transmitral pressure gradient, mmHg \pm SD	1.9 ± 1.5	1.4 ± 1.2	2.1 ± 1.6	0.14
Systolic pulmonary pressure, mmHg \pm SD	49 ± 14	48 ± 13	48 <u>+</u> 15	0.86

Evalve Experience

- Similar results for both degenerative & functional MR
 - Decreased LV chamber size & septal-lateral dimensions
- Surgical option for repair preserved
 - Replacement in more complex valves
- Patients stable during procedure
- Unmet need for poor surgical candidates
 - Clinical adoption in FMR

Randomized trial 2 year follow-up completed

- Lesser efficacy at reducing MR
- Superior safety & NYHA class
- Excellent clinical outcomes to 3 years

